
MySQL Scale-Out
by

application partitioning

Oli Sennhauser

Rebenweg 6
CH – 8610 Uster

Switzerland
oli.sennhauser@bluewin.ch

Introduction
Eventually every database system hit its limits. Espe
cially on the Internet, where you have millions of users
which theoretically access your database simul
taneously, eventually your IO system will be a bottle
neck.

Conventional solutions
In general, as a first step, MySQL Replication is used to
scale-out in such a situation. MySQL Replication scales
very well when you have a high read/write (r/w) ratio.
The higher the better.

But also such a MySQL Replication system (let us call
it “MySQL Replication cluster” [4] rather than “MySQL
Cluster” in this paper) hits its limits when you have a
huge amount of (write) access.
Because database systems have random disk access, it's
not the throughput of your IO system that's relevant but
the IO per second (random seek). You can scale this in a

very limited way by adding more disks to your IO sys
tem, but here too you eventually hit a limit (price).

Scale-out possibilities
So we have to think about other possibilities to scale-
out. One possibility would be to use MySQL Cluster.
This solution can be very fast because it is not IO
bound. But it has some other limits like: amount of
available RAM, and joins not performing to well. If
these limitations were not applicable, MySQL Cluster
would be a good and performant solution.
An other promising but more complex solution with
nearly no scale-out limits is application partitioning. If
and when you get into the top-1000 rank on alexa [1],
you have to think about such solutions.

Application partitioning
What does “application partitioning” mean? Application
partitioning means the following:

“Application partitioning distributes application pro
cessing across all system resources...”

There are 2 different kinds of application partitioning:
horizontal and vertical application partitioning.

Horizontal application partitioning
Horizontal application partitioning is also known as
Multi-Tier-Computing [2] which means splitting the
database back end, the application server (middle tier),
the web server, and the client doing the display. This
nowadays is common sense and good practice.
But with horizontal application partitioning you still
have not avoided the IO bottleneck on the database back
end.

Replication
MySQL

Replication
Master (write)

MySQL
Replication

Slave
(readonly)

MySQL
Replication

Slave
(readonly)

MySQL
Replication

Slave
(readonly)

MySQL
Replication

Slave
(readonly)

Application serverApplication serverApplication serverApplication server

Web serverWeb serverWeb serverWeb server

Vertical application partitioning
With vertical application partitioning you can scale-out
your system to a nearly unlimited degree. The more
loosely coupled your vertical application partitions are,
the better the whole system scales [3].

But what does vertical application partitioning now
mean? For example suppose you have an on-line contact
website with 1 million users. Some of them, let's say
20%, are actively searching for contacts with other
people. Each of these active searching users does 10
contact requests per day. This gives approximately 2
million changes into the back end (23 changes per
second). In general one contact request results in more
than one change in the database and also people are
doing this contact search during peak hours (1/3 of the
day). This can result easily in several hundred changes
per second on the database during peak time. But your
I/O system is roughly limited by this formula:

250 I/O's /s per disk * #disks = #I/O /s

When you are using MySQL Replication, some caching
mechanism (MySQL query cache, block buffer cache,
file system cache, battery buffered disk cache, etc.) can
help and when you follow the concept of “relaxation of
constraints” you can increase this amount of I/O by
some factors. You can handle these 1 million users on an
optimized MySQL Replication Cluster system (when
you have tuned it properly).
But what happens when you want to scale by factor 10
or even 100? With 10 million users your system
definitely hits its limits. How do we scale here?
In this case we can only scale if we split up one MySQL
Replication Cluster into several pieces. This splitting
can be done for example by user (user_id).

It should be considered that the splitting is done by the
entity with the smallest possible interaction. Otherwise a
lot of synchronization work has to be done between the
concerned database nodes. It should also be considered
that some data can or must be kept redundant (general

static information like for example geographic informa
tion). This can also be done by a separate replication
tree:

The disadvantage of this solution is, that you have to
(keep) open at least 1 connection from each application
server (AS) to each Master (Mn) and Slave (Sn) of each
MySQL Replication cluster. So the limitation of this
system is roughly:

#Conn./Server : #AS Conn. = #Replication clusters

1000 : 50 = 20

When this limit too has been hit, a much more
sophisticated solution with distribution of the users in
the AS and WS tier has to be considered:

But in this concept something like an “asynchronous
inter MySQL Replication Cluster” protocol has to be
established.

How to partition an entity
An entity can be split up in several different ways:

Partition by RANGE
Users are distributed to their MySQL Replication
cluster, for example by their user_id. For every 1
million users you have to provide a new MySQL
Replication cluster:

Monolithic system
containing:

* database back end,
* application logic and

* presentation logic

Client Web-Client

Web server

Application server /
Middle-tier

MySQL database
back end

horizontal
application
partitioning

AS

WS

M

S

AS

WS

M
1

S
1

M
2

S
2

M
3

S
3

M
4

S
4

AS

WS

M
1

S
1

M
2

S
2

M
3

S
3

M'

S'

AS

M
1

S
1

M
2

S
2

M
3

S
3

WS WS WS

AS AS

Internet

user_id <
1'000'000

AS

user_id <
2'000'000

user_id <
3'000'000 ...

Advantages:
• No redistribution of users during growth needed.

You only have to add a new MySQL Replication
cluster.

• Improves slightly locality of reference [5].

• Easy to understand.

• Easy to locate data.

• Likelihood of hot-spots is low.

• Simple distribution logic can be implemented.
Disadvantages:
• On the “old” MySQL Replication clusters it is

likely that you get less and less activity. So you
either have to waste hardware resources -- which is
not too serious because these machines are depre
ciated after some years and “only” consume some
power and space in your IT center -- or you have to
migrate users from the oldest MySQL Replication
Clusters once in a while -- which causes a lot of
traffic and probably some downtime on these 2 ma
chines.

• Resource balancing causes a lot of migration work.

• When resource balancing is done, simple distribu
tion logic does not apply anymore. Then a lookup
mechanism is needed.

Partition by a certain CHARACTERISTCS
Users are distributed by certain characteristics for
example last name, birth date or country.

Advantages:
• Easy to understand.

• Easy to locate data.
Disadvantages:
• You can get “hot-spots” for example on the server

with the last name starting with “S” or some coun
tries like US, JP, D etc., and get unused resources
on servers with for example birth date February
29th, last names with “X” and “Y” or countries like
the Principality of Liechtenstein, Monaco or An
dorra. This can cause a necessity for redistribution
of data.

• This can be avoided by merging some of the values
into one MySQL Replication Cluster but then some
look-up table must exist.

• Resource balancing is difficult.

Partitioning by HASH/MODULO
An entity can also be split up by some other functions
like MODULO. The MySQL Replication Cluster is de
termined by either:

Cluster = user_id MOD #Clusters

or

Cluster = HASH(last_name) MOD #Clusters

Splitting up by DIV is already discussed in “Partitioning
by RANGE”.

Advantages of HASH:
• Random distribution, thus no hot-spots
Disadvantages of HASH:
• For rebalancing the whole system must be mi

grated!
• Hot-spots can happen if done wrong for example

HASH(country) MOD # Clusters

Advantages of MOD:
• Deterministic distribution, target cluster is easily

visible “by hand”.
Disadvantages of MOD:
• For rebalancing the whole system must be mi

grated!

Partition by LOAD (with lookup table)
A dynamic way to partition users is measuring the load
of each MySQL Replication cluster (somehow) and dis
tributing new users accordingly (similar to a load balan
cer). For this, for every user a more or less static lookup
table is needed to determine on which MySQL Replica
tion cluster a user is located.

Advantages:
• New MySQL Replication cluster is automatically

loaded more until it reaches saturation.
• No data redistribution is need.
Disadvantages:
• When old users are not removed after some posting

peaks can happen on the old systems.

Literature
[1] Alexa top 500 ranking: http://www.alexa.com
[2] Multi-Tier-Computing:
http://en.wikipedia.org/wiki/Three-
tier_%28computing%29
[3] Loose coupling:
http://en.wikipedia.org/wiki/Loose_coupling
[4] Cluster:
http://en.wikipedia.org/wiki/Computer_cluster
[5] Locality of reference:
http://en.wikipedia.org/wiki/Locality_of_reference

last_name
BETWEEN
'A' AND 'I'

AS

last_name
BETWEEN
'J' AND R'

last_name
BETWEEN
'S' AND 'Z'

50% load

AS lookup
table

90% load
60% load

20% load

http://www.alexa.com/
http://en.wikipedia.org/wiki/Locality_of_reference
http://en.wikipedia.org/wiki/Computer_cluster
http://en.wikipedia.org/wiki/Loose_coupling
http://en.wikipedia.org/wiki/Three-tier_(computing)
http://en.wikipedia.org/wiki/Three-tier_(computing)

